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Theoretical model of x-ray scattering as a dense matter probe
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We present analytical expressions for the dynamic structure factor, or form factorS(k,v), which is the
quantity describing the x-ray cross section from a dense plasma or a simple liquid. Our results, based on the
random phase approximation for the treatment on the charged particle coupling, can be applied to describe
scattering from either weakly coupled classical plasmas or degenerate electron liquids. Our form factor cor-
rectly reproduces the Compton energy down-shift and the known Fermi-Dirac electron velocity distribution for
S(k,v) in the case of a cold degenerate plasma. The usual concept of scattering parameter is also reinterpreted
for the degenerate case in order to include the effect of the Thomas-Fermi screening. The results shown in this
work can be applied to interpreting x-ray scattering in warm dense plasmas occurring in inertial confinement
fusion experiments or for the modeling of solid density matter found in the interior of planets.
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I. INTRODUCTION

Scattering by free electrons~Thomson scattering! in a
plasma using optical probes has been a successful techn
in studying basic parameters and transport properties in
derdense plasmas with electron densities up tone
&1021 cm23 @1#. However, in inertial confinement fusio
~ICF! experiments a variety of plasma regimes are crea
@2#, and the emerging interest in understanding the prope
of matter under extreme conditions necessitates the deve
ment of accurate dense matter probes well above the cri
densities achieved by optical techniques. The possibility
extending spectrally resolved Thomson scattering in the h
x-ray regime for the measurement of electron temperat
electron density, and ionization state of solid density plasm
was first discussed by Landenet al. @3# as a viable diagnos
tics alternative in ICF experiments, thus allowing the pro
pect of equation of state~EOS! model validation by an ac
curate determination of the microscopic electronic state
the material.

In Ref. @3#, calculations were presented for scattering p
rametersa51/klD!1, wherelD is the Debye length and
k5k02k1 is the difference between the wave number of
scattered and the incident probe radiation. In the pres
work, we provide a theoretical expression for the scatter
form factor to represent elastic and inelastic x-ray scatte
for arbitrarya parameter. Differently from the usual optic
Thomson scattering, at hard x-ray wavelengths, both free
bound electrons in a plasma contribute to the scattering
cess, and, at the same time, the energy transferred by
photon to the electron is large compared to the kinetic
ergy. The scattered photons are thus down-shifted in en
by the Compton effect, but they are also broadened du
the thermal motion of the electrons. Since traditional Com
ton scattering usually denotes the scattering of x rays fr
rest electrons, while Thomson scattering refers to the sca
ing of photons by free charges in the low photon ene
limit, in this paper we will use the termx-ray Thomson scat
tering to refer to the combined scattering by free and bou
charges at arbitrary photon and electron energy.
1063-651X/2003/67~2!/026412~10!/$20.00 67 0264
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Our treatment can be applied in the description of scat
ing from degenerate to weakly coupled plasmas. For plas
obeying the classical statistics, the electron-electron coup
constant is defined as~see, e.g., Ichimaru@4#! G
5e2/4pe0kBTed, whereTe is the electron temperature an
d5(3/4pne)

1/3 is the mean sphere radius per electron, w
ne the electron density. In other words,G is the ratio between
the potential and the kinetic energy of the electrons. F
coupling between different charged particles, we also nee
account for the ionization state of the material. In an id
plasma,G!1 and the kinetic energy dominates the partic
motion with negligible interparticle coupling, while in
strongly coupled plasma,G@1, the electrostatic~Coulomb!
forces determine the nature of the particle motion. Wea
coupled plasmas lie in the rangeG&1. The extension of
definition of the coupling constantG to the quantum domain
~i.e., a degenerate plasma! is discussed by Liboff@5#. In this
case, quantum diffraction prevents the electrons to get a
trarily close to each other andG is now the ratio between the
potential and the Fermi energy,EF5kBTF , of the electrons.
Having EF5\2(3p2ne)

2/3/2me , as electron density in-
creases, in contrast to a classical plasma, the coupling
stant decreases, sinceG[Gq5e2/4pe0EFd;ne

21/3.

II. THEORY

A. Basic definitions

We are interested in describing the scattering from a u
form plasma containingN ions per unit volume. IfZA is the
nuclear charge of the ion, the total number of electrons
unit volume in the system, including free and bound ones
ZAN. Let us now assume that we probe such a system wi
rays of frequencyv0 such that\v0@EI , with EI the ion-
ization energy of any bound electron, i.e., the incident f
quency must be large compared to any natural absorp
frequency of the scattering atom, which allows us to negl
photoabsorption. During the scattering process, the incid
photon transfers momentum\k and energy\v5\2k2/2me
5\v02\v1 to the electron, wherev1 is the frequency of
©2003 The American Physical Society12-1
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GREGORIet al. PHYSICAL REVIEW E 67, 026412 ~2003!
the scattered radiation. Under these conditions we can di
guish between electrons that arekinematicallyfree with re-
spect to the scattering process andcore electrons that are
tightly bound to the atom. Ifan is the orbital radius of the
electron with principal quantum numbern, kinematically
free electrons satisfy the relation@6,7# kan*1 ~in the hydro-
genic approximation,an;aBn2/ZA with aB54pe0\2/mee

2

the Bohr radius!, while the opposite inequality applies fo
core electrons. This condition is equivalent to assuming
\v, the energy transferred to the electron by Compton s
tering, is larger than its binding energy. In the nonrelativis
limit ( \v!\v0)

k5uku5
4p

l0
sin~u/2!, ~1!

with l0 the probe wavelength andu the scattering angle. We
denote withZf andZc the number of kinematically free an
core electrons, respectively. Clearly,ZA5Zf1Zc . To avoid
possible confusions, we should stress thatZf is conceptually
different from thetrue ionization state of the atom. It in
cludes both the truly free~removed from the atom by ioniza
tion! and the valence~weakly bound! electrons; thusZf5Z
1Zv , whereZ is the number of electrons removed from t
atom, andZv is the number of valence electrons. In the lim
iting case of a liquid metal,Z50, and only the valence~or
conduction! electrons need to be considered.

B. Scattering cross section

Following the approach of Chihara@8,9#, the scattering
cross section is described in terms of the dynamic struc
factor of all the electrons in the plasma,

d2s

dVdv
5sT

k1

k0
S~k,v!, ~2!

wheresT is the usual Thomson cross section andS(k,v) is
the total dynamic structure factor defined as

S~k,v!5
1

2pNE eivt^re~k,t !re~2k,0!&dt, ~3!

with ^•••& denoting an ensemble average and

re~k,t !5(
s51

ZAN

exp@ ik•r s~ t !# ~4!

is the Fourier transform of the total electron density distrib
tion, with r s(t) the time dependent position vector of thesth
electron. Assuming that the system is isotropic, as in the c
of interest here~liquid metals or plasmas!, the dynamic
structure factor depends only on the magnitude ofk, not on
its direction. The next step consists in separating the t
density fluctuation, Eq.~4!, between the free (Zf) and core
(Zc) electron contributions, and separating the motion of
electrons from the motion of the ions. The details of pro
dure are given by Chihara@8,9#, thus obtaining for the dy-
namic structure,
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S~k,v!5u f I~k!1q~k!u2Sii ~k,v!1ZfSee
0 ~k,v!

1ZcE S̃ce~k,v2v8!Ss~k,v8!dv8. ~5!

The first term in Eq.~5! accounts for the density correlation
of electrons that dynamically follow the ion motion. Th
includes both the core electrons, represented by the ion f
factor f I(k), and the screening cloud of free~and valence!
electrons that surround the ion, represented byq(k) @10#.
Sii (k,v) is the ion-ion density correlation function. The se
ond term in Eq.~5! gives the contribution in the scatterin
from the free electrons that do not follow the ion motio
Here, See

0 (k,v) is the high frequency part of the electron
electron correlation function@11# and it reduces to the usua
electron feature@12,13# in the case of an optical probe. In
elastic scattering by core electrons is included in the last t
of Eq. ~5!, which arises from Raman transitions to the co
tinuum of core electrons within an ion,S̃ce(k,v), modulated
by the self-motion of the ions, represented bySs(k,v). We
point out that in Eq.~5! electron-ion correlations are implic
itly accounted in the first term, since, as shown by Chih
@8#, the electron-ion response function can be written
terms of the ion-ion response function. We observe that
total density correlation function must obey the relation@14#

S~k,2v!5exp~2\v/kBTe!S~k,v!, ~6!

which is a consequence of detailed balance. This gives ris
asymmetry in the spectrum as we will discuss further in
following sections.

We will present simplified expressions for each term
Eq. ~5!. The relative importance of each term is discuss
and scattering profiles for typical conditions found in expe
ments are obtained. The sensitivity to the various parame
is presented using beryllium solid density plasma as an
ample. A similar method based on the measurement
frequency-integrated~total! x-ray cross section for the diag
nostics of high density plasmas was originally proposed
Nardi and co-workers@10,15,16#. While their approach was
based on the calculation of the static structure factor,
wish to determine the dynamic structure factor. This requi
frequency resolved measurements, standard in optical Th
son scattering. The various terms in Eq.~5! provide scatter-
ing signals at different frequencies. With the available x-r
line sources, spectrometers and detectors in ICF experim
@3#, we currently are able to resolve the high frequency p
of the spectrum,v*kv t , where v t5(kBTe /me)

1/2 is the
electron thermal speed.

C. Ion correlations: The ion feature

The ion-ion correlations reflect the thermal motion of t
ions and/or the ion plasma frequency, and since we can
currently experimentally access this low frequency part
the spectrum, we can approximateSii (k,v)5Sii (k)d(v).
We thus only need to calculate the static structure factor
ion-ion correlations. We shall also observe that for typic
conditions in dense plasmas for ICF experiments, the i
are always nondegenerate, since their thermal de Bro
2-2
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wavelength is much smaller than the average interpart
distance. On the other hand, the electrons can exhibit s
degree of degeneracy, and in the case of very cold and d
plasmas, they will obey the Fermi-Dirac distribution. Und
these conditions, and within the framework of the rand
phase approximation~RPA!, we can calculateSii (k) using
the semiclassical approach suggested by Arkhipov and D
letov @17#, which is based on a pseudopotential model for
interaction between charged particles to account for quan
diffraction effects ~i.e., the Pauli exclusion principle! and
symmetry@18#. The correlation function is then calculated
the effective temperatureTc f.(Te

21Tq
2)1/2, where Tq

5TF /(1.325120.1779Ar s), with r s5d/aB . This corrected
temperature is chosen such that the temperature of an
tron liquid obeying classical statistics exactly gives the sa
correlation energy of a degenerate quantum fluid atTe50
obtained from quantum Monte Carlo calculations@19#. This
approach was shown to reproduce finite-temperature s
response of an electron fluid, valid for arbitrary degener
@19#.

The resultant expressions for the various static structu
are thus

Srs~k!5d rs2
Anrns

kBTc f
F rs~k!, ~7!

wherer ,s5e ~electrons! or i ~ions!, ne5Zfni5ZfN, and the
temperature has been assumed equal for both ions and
trons. Symmetry in the electron-ion interactions requi
Sei(k)5Sie(k). The coefficientsF rs(k) are given by@17#

Fee~k!5
e2

e0D F k2

11k2lee
2

1kDi
2 S 1

~11k2lee
2 !~11k2l i i

2 !

2
1

~11k2lei
2 !2D 1AS k21

kDi
2

11k2l i i
2 D k2

3exp~2k2/4b!G , ~8!

F i i ~k!5
Zf

2e2

e0D F k2

11k2l i i
2

1kDe
2 S 1

~11k2lee
2 !~11k2l i i

2 !

2
1

~11k2lei
2 !2D 1

Ak2kDe
2

11k2l i i
2

exp~2k2/4b!G , ~9!

Fei~k!52
Zfe

2

e0D

k2

11k2lei
2

, ~10!

whereb5(lee
2 p ln 2)21, A5kBTc fln 2p3/2b23/2e0 /e2, and
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k2kDe

2

11k2lee
2

1
k2kDi

2

11k2l i i
2

1kDe
2 kDi

2 S 1

~11k2lee
2 !~11k2l i i

2 !
2

1

~11k2lei
2 !2D

1Ak2kDe
2 S k21

kDi
2

11k2l i i
2 D exp~2k2/4b!. ~11!

The inverse of the electron and the ion Debye lengths
kDe5(nee

2/e0kBTc f)
1/2 and kDi5(Zfnee

2/e0kBTc f)
1/2, re-

spectively. In Eqs.~8!–~11!, the thermal de Broglie wave
length is defined byl rs5\/(2pm rskBTc f)

1/2 with m rs
5mrms /(mr1ms) the reduced mass of the interacting pa
To complete the description of the first term of Eq.~5! we
need to calculate the screening charge and the ionic f
factor. The screening charge is given by@8,17#

q~k!5
Cei~k!

e~k,0!
, ~12!

where e(k,0) is the electron permittivity at frequencyv
50, which is calculated including the full effect of differen
statistics~Boltzmann or Fermi-Dirac! as we will discuss in
the following section, andCei(k) the electron-ion direct cor-
relation function. Using the Ornstein-Zernike relations@14#,
the electron-ion direct correlation is found to be

Cei~k!5
AZfSei~k!

See~k!Sii ~k!2Sei
2 ~k!

, ~13!

with the partial static structures given by Eq.~7!.
The ionic form factor,f I(k), can be exactly calculated

for example, following the approach described by James@20#
in the Hartree-Fock self-consistent field method. This a
proach may be quite laborious, so, instead, hydrogenic w
functions with inclusion of appropriate screening consta
for the bound electrons@21# have been used to obtain th
ionic form factor. As shown by Pauling and Sherman@21#,
this technique is fairly accurate for the low-Z elements with
the advantage of simple analytical results. Typically, the c
tribution from K-shell (1s) electrons to the totalf I(k) is
given by

f I ,1s~k!5
1

@11~kas/2!2#2
per K electron, ~14!

whereas5aB /(ZA2zscr) is the effective radius of the elec
tron, which is itself screened by the other 1s electron. The
size screening constant,zscr , varies for each element and it
value can be found in Ref.@21#. Contributions to the ionic
form factor from upper level bound electrons can be cal
lated similarly and formulas are given in Ref.@21#. For neu-
tral isolated atoms, the ionic form factor is replaced by t
atomic form factorf A(k), which is obtained for various ele
ments, for example, from the numerical fits given by Wa
maier and Kirfel@22#. However, for plasmas and liquid me
2-3
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GREGORIet al. PHYSICAL REVIEW E 67, 026412 ~2003!
als, the approximationf A(k); f I(k)1q(k) is expected to
strictly hold only in the limit@23# k→0, thus givingf A(k)
5 f I(k)1q(k)5Zc1Zf5ZA .

D. Electron correlations: The electron feature

The free electron density-density correlation function t
appears in the second term of Eq.~5! can be formally ob-
tained through the fluctuation-dissipation theorem@24#:

See
0 ~k,v!52

\

12exp~2\v/kBTe!

e0k2

pe2ne

ImF 1

e~k,v!G ,
~15!

wheree(k,v) is the electron dielectric response function.
the case of an ideal classical plasma, the dielectric resp
is evaluated from a perturbation expansion of the Vlas
equation@25#. The resultant form for the density correlatio
function is then known as the Salpeter electron feature@12#.
This approach, however, fails when the electrons beco
degenerate or nearly degenerate as quantum effects beg
dominate. Under the assumption that interparticle inter
tions are weak, so that the nonlinear interaction between
ferent density fluctuations is negligible, the dielectric fun
tion can be derived in the RPA@26,27#. In the classical limit,
it reduces to the usual Vlasov equation.

We shall stress the point that in the limit of the RP
strong coupling effects are not accounted for, thus limit
the model validity to plasma conditions in the rangeG&2.
Use of the RPA at larger couplings may still provide fair
accurate results ifkd*1 @28,29#. In the cases studied her
the plasmas are within the range of validity. However, ext
sions to strong coupling are possible in terms of a local fi
correction@30# of the dielectric response functions, but th
are significantly more complex and can be obtained o
through the solution of the hypernetted chain equation@31#
or molecular dynamics simulations@32#. It turns out that the
RPA is also rather accurate to describe the collective beh
ior of the electrons in the valence band of metals@33,34#,
even if higher-order corrections beyond the RPA have b
observed in some experiments@35,36#. In those cases, devia
tions from the RPA resulted from the periodic potential of t
crystal structure of the solid or from higher-order dens
excitations@37#.

The RPA form of the dielectric function is~see, e.g., Lan-
dauet al. @25#!

e~k,v!512
e2

\e0k2E f ~p1\k/2!2 f ~p2\k/2!

k•p/me2v2 in

2d3p

~2p\!3
,

~16!

with n→01. The electron distribution function is specifie
as

f ~p!5
1

expS p2/2me2m

kBTe
D11

, ~17!
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where p is the electron momentum andm is the chemical
potential, defined by the normalization condition

E f ~p!
2d3p

~2p\!3
5ne , ~18!

where we have accounted for both spin-state electrons
useful fitting formula for the chemical potential that interp
lates between the classical and the quantum regions is@38#

m

kBTe
52

3

2
ln Q1 ln

4

3Ap
1

AQ2b211BQ2(b11)/2

11AQ2b
,

~19!

with Q5kBTe /EF (EF is the Fermi energy of the electrons!,
A50.259 45,B50.072, andb50.858. In the limitTe→0,
which corresponds to an electron gas in the ground state
dielectric function takes the Lindhard-Sommerfeld for
@27#. In the case of scattering from uncorrelated electro
the form of the dynamic structure follows the electron velo
ity distribution function@39# and it has been recently specia
ized to the case of x-ray scattering for conditions relevan
ICF experiments by Landenet al. @3#.

Even for nondegenerate electrons, the classical resul
the dynamic structure initially derived by Salpeter@12# can-
not be directly applied to describe x-ray~Compton! scatter-
ing, since quantum corrections are not negligible anym
@40#. The importance of such effects is represented by
parameter

k5
\k

2A2mev t

, ~20!

which is large if the classical Compton shift (\2k2/2me) is
large compared to the average thermal energy of the e
trons. By substituting in Eq.~16! the Boltzmann distribution
and carrying out the integration in momentum space, we
@40#

e~k,v!511
vp

2

k2v t
2

1

4k F12W~xe1k!

xe1k
2

12W~xe2k!

xe2k G ,
~21!

where

xe5
v

A2kv t

, ~22!

W~xe!5122xee
2xe

2E
0

xe
et2dt1 iApxee

2xe
2
. ~23!

We will refer to this approach together with the fluctuatio
dissipation theorem as the quantum corrected Salpeter
proximation ~QCSA!. In the limit k!1, the usual Salpete
approximation is indeed reproduced@40#. The fact that the
QCSA includes both the correction in the electron recoil e
ergy and detail balance results in completely different l
profiles than the ones expected from traditional~optical!
2-4
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THEORETICAL MODEL OF X-RAY SCATTERING AS A . . . PHYSICAL REVIEW E67, 026412 ~2003!
Thomson scattering. This is clearly seen in Fig. 1, where
compare typical line profiles for an incident optical probe
l05532 nm, an extreme ultraviolet~EUV! probe at l0
54.13 nm, and a hard x-ray probe atl050.26 nm. For the
optical probe, the Compton recoil energy (;1025 eV) is
always negligible compared to the electron thermal ene
Thus the Salpeter approximation gives for the free elect
structure factor the well known symmetric satellites for lar
values of a51/klD . This is not true anymore atl0
54.13 nm, since the parameterk*1 for a.1, and the re-
sultant spectrum obtained from the QCSA exhibits stro
asymmetries due to detailed balance. In particular, the
shifted component on the spectrum is strongly enhan

FIG. 1. Comparison between free electron dynamic structu
See

0 (k,v). ~a! Optical probe in a classical plasma with densityne

51.031019 cm23 and a scattering angle ofu590°. The parameter
a51/klD is given for different electron temperatures. The Salpe
approximation applies in this regime.~b! EUV probe in a classica
plasma with densityne51.031021 cm23 and a scattering angle o
u5160°. The parametera51/klD is given for different electron
temperatures. The electron recoil energy is 0.3 eV and the QCS
used in the calculation of the dynamic structure.~c! Hard x-ray
probe in a degenerate plasma with densityne51.031023 cm23 and
a scattering angle ofu560°. The degenerate scattering parame
~see text! is now a50.8 for Te50.8 eV or Te53.0 eV, anda
50.5 for Te513.0 eV. The electron recoil energy is 22 eV and t
full RPA is used in the calculation of the dynamic structure.
02641
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compared to the blue shifted one. When we move to
x-ray regime, since\v/kBTe@1, only the red part of the
spectrum remains and the electron recoil energy mainly
termines its location. As the electron temperature is redu
belowTF , the electron velocity distribution becomes dege
erate and the full RPA is required to describe the spec
shape of the free electron correlation function. In Fig. 1~c!,
different profiles are plotted at the electron temperatures
give same classical scattering parametersa51/klD as in the
corresponding Figs. 1~a! and 1~b!. It is then clear that, in this
regime, the usual definition of the scattering parameter
terms of the Debye length breaks down. In oder to desc
scattering processes in degenerate and strongly coupled
ids, we will introduce thegeneralizedscattering paramete
a51/ks, wheres is the characteristic screening length of t
electrostatic interactions. For an ideal classical plasmas co-
incides with the Debye lengthlD . If a,1, the electrons
behave as uncorrelated scatterers, while for largea param-
eters the scattering reflects their collective motion. In a cl
sical plasmaa;(Te /ne)

1/2, and the nature of the scatterin
depends on both the electron temperature and the elec
density. As the plasma becomes degenerate, the Debye le
does not represent anymore the screening of the Coul
forces. However, the classical results are still valid if, inste
of using the kinetic temperature, they are evaluated at
effective temperatureTc f @19#, as defined in paragraph 2 o
Sec. II C. Figure 2 showsa5const contours in theTe-ne
plane for typical experimental conditions. We see that in
case of an ideal (r s5d/aB→0) degenerate electron liqui
this approximation yields s;lTF , where lTF

5A2e0EF/3nee
2 is the Thomas-Fermi screening lengt

Thus,a becomes proportional tone
1/6 and the type of scatter

ing ~uncorrelated or collective! is independent ofTe and
weakly dependent on the electron density. Collective sca
ing can thus only be practically accessed by increasing
wavelength of the probe x ray. Finally, in a strongly coupl
plasma (G@1), the mean particle separationd is the only
meaningful quantity that can be associated to a scree
distance, thusa51/kd. This gives a dependencea;ne

1/3,
which smoothly interpolates between the ideal class
plasma and fully degenerate regimes.

In Fig. 3, we have plotted normalized line profiles
See

0 (k,v) calculated assuming incident x rays withl0

50.26 nm, corresponding to the Ti He-a 4.75-keV emission
line, and a scattering angle ofu5160°. The various models
compared with the RPA in Fig. 3 are the analytical Lindha
Sommerfeld theory@27#, which is exact forTe50, the
QCSA form factor, and the calculations of Landenet al. @3#,
which are a direct representation of the electron distribut
function. At a density ofne51.031023 cm23, the Fermi
temperature isTF57.85 eV. We indeed see that, at tempe
tures lower thanTF , when degeneracy effects are importa
the QCSA result deviates from the RPA one. On the ot
hand, atTe510 eV (Te.TF), the QCSA agrees very wel
with the RPA since now the kinetic temperature is comp
rable withTF . From Fig. 3, we also see that atTe51 eV the
calculated profile ofSee

0 (k,v) is parabolic, while atTe

510 eV the profile is Gaussian. The transition from a pa

s

r

is

r
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FIG. 2. Calculateda5const
contours forl050.26 nm~a! and
l050.78 nm ~b!, and u5160°.
The lineTe5TF is also plotted in
the figure.
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d is
bolic to a Gaussian profile, as the electron temperatur
raised, corresponds to the transition from Fermi to Bo
mann statistics in the electron velocity distribution@41#. Dy-
namic structures for collective scattering~i.e., largea param-
eters! are shown in Fig. 4, which correspond to a long
probe radiation of wavelengthl050.78 nm ~Al He-a 1.6-
keV emission line!, all the other conditions being the same
in Fig. 3. Again, we see failure of the QCSA for the dege
erate case (Te!TF), but agreement with the RPA forTe
;TF . In Figs. 3 and 4, we see the strong asymmetry w
respect tov50 in the line profiles resulting from the de
tailed balance relation~6!. In Fig. 4~a!, we also notice the
departure from a typical parabolic to a linear profile of t
degenerate electron fluid response. AtTe50, this occurs
when the Doppler broadening of the line (;\kvF , wherevF
is the Fermi velocity! is larger than the classical Compto
shift (\2k2/2me). In this case, electrons at the lowest ener
levels within the Fermi sphere cannot absorb the Comp
energy, as it would still leave them inside the fully occupi
Fermi sphere. Accounting for such a contribution that affe
the region v/k,vF2\k/2me yields a linear electron re
sponse forTe!TF @27#, as can be seen in Fig. 4~a!.

E. Core electron excitations

The last term in Eq.~5! corresponds to the density corr
lations of the tightly bound electrons within each single io
and it arises from electron-hole and bound excitations of
02641
is
-

r

-

h

y
n

s

,
e

inner core electrons. As discussed by Mizuno and Ohm
@7#, inner core electrons can be excited by the probe radia
to continuum states and the corresponding spectrum of
scattered radiation is that of a Raman-type band. Exp
ments of Suzuki@42# have then confirmed the existence
such type of excitation in the form of a weak band near
tail of the Compton band. In the high frequency limit, th
ion-ion self-structure isSs(k,v);d(v) @14#. The Fermi
golden rulein the first-order perturbation theory can be us
to calculate the spectrum resulting from electron-hole ex
tations@43,44#, thus obtaining the following for the 1s elec-
tron jumping into the continuum:

S̃ce~k,v!.
256r kmeas

2

\~12e22p/pvas!

k4as
41k2as

2~11pv
2 as

2!/3

@~k2as
2112pv

2 as
2!214pv

2 as
2#3

3expF2
2

pvas
tan21S 2pvas

11k2as
22pv

2 as
2D G , ~24!

where as5aB/ZA is the K-shell radius, r k;1
2(u f l(k)u/Zc)

2 is a normalization factor, andpv is defined
by the relation\2pv

2 /2me5\v2EB , with EB the binding
energy of theK-shell electron. Clearly, transitions into th
continuum occurs only if\v.EB , thus, in contrast to the
usual Compton scattering, the position of the Raman ban
-

e
-

FIG. 3. Free electron dynamic
structure See

0 (k,v) for ne51.0
31023 cm23 at Te51 eV ~a! and
Te510 eV ~b!. The probe radia-
tion is l050.26 nm and the scat
tering angle isu5160°, anda
50.40 ~a! or a50.29 ~b!. Values
have been normalized to the sam
peak height to facilitate the com
parison.
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FIG. 4. Free electron dynamic
structure See

0 (k,v) for ne51.0
31023 cm23 at Te51 eV ~a! and
Te510 eV ~b!. The probe radia-
tion is l050.78 nm and the scat
tering angle isu5160°, anda
51.17 ~a! or a50.85 ~b!. Values
have been normalized to the sam
peak height to facilitate the com
parison.
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independent onk ~or the scattering angle!, with its threshold
determined only by the ionization threshold of the innerK
shell of the atom.

In Fig. 5, we compare the dynamic structure factors
free and core electrons, as given by Eqs.~15! and~24! for the
case of a beryllium solid density plasma.

At Te51 eV, theK-shell ionization potential is chosen t
be the same as for isolated beryllium atoms, while atTe
540 eV the beryllium ions are assumed to be all dou
ionized with aK-shell threshold calculated from the fittin
formula given by Bandet al. @45#. In both cases we hav
assumedZf5Zc52. From Fig. 5, we clearly see that eith
considering an x-ray probe atl050.26 nm or l0
50.78 nm, the contribution from core electron transitions
the continuum is small compared to the free electron
namic structure. In addition, the Raman band has width c
parable or larger than the Compton band@46#, so we can
regard this type of contribution as yielding only a sm
background. This also seems consistent with the prelimin
results presented by Glenzer@47# on x-ray scattering from
moderately heated beryllium targets.

III. X-RAY SCATTERING PROFILES

Based on the theory outlined in the preceding sections
are now able to calculate the scattering profile for x-r
02641
r

y

-
-

l
ry

e
y

probes at arbitrary scattering angle, for either classica
quantum plasmas. The only limitation is that the degree
coupling must not be too large to invalidate the limits of t
RPA. We have obtained synthetic line profiles for the
He-a 4.75-keV radiation probe atu5160° scattering angle
In addition, we have assumed that the probe material con
of beryllium (ZA54) at various compressed densities.
simulate actual experimental data, the theoretical line pro
from Eq. ~5! has been convoluted with a 50-eV Gaussi
instrument function. In Fig. 6, we have plotted synthetic li
shapes for different values ofTe , ne , andZf ~or Zc). Figure
6~a! shows that the broadening of the Compton profi
above instrumental, goes asATF;ne

1/3 at highest density.
Similarly, Figs. 6~b! and 6~c! show an increased Dopple
broadening of the Compton feature asTe is raised.

The effect of the ionization state on the line profiles c
also be seen in Figs. 6~d!–6~f!. Here, we have plotted syn
thetic line shapes for different values ofZf ~or Zc) with ne
53.031023 cm23 (TF516.3 eV) and Te51 eV ~d!, Te
510 eV ~e!, or Te540 eV ~f!. We see dramatic difference
in the simulated line shapes for the variousZf . This effect
then suggests that x-ray Thomson scattering can also
implemented for inferring the ionization state of solid de
sity plasmas based on the difference in the intensity betw
-
s

-

FIG. 5. Comparison between
the RPA dynamic structures aris
ing from free and core electron
for a beryllium plasma. AtTe

51 eV the beryllium is assumed
in its normal state (Zf consists
only of conduction electrons! with
a K-shell ionization potentialEB

5111.5 eV. At Te540 eV, the
beryllium is assumed doubly ion
ized (Zf includes only free elec-
trons! with EB5159.5 eV. The
scattering angle isu5160°. The
scattering parameter isa50.46
~a!, a51.36 ~b!, a50.23 ~c!, a
50.67 ~d!.
2-7
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FIG. 6. Synthetic dynamic structureS(k,v) calculated for beryllium target (ZA54) at variousTe , ne , andZf . The probe radiation is
l050.26 nm and scattering angleu5160°.
ili
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e

the unshifted and the Compton shifted peaks. This possib
was initially suggested by Landenet al. @3#, since current
optical techniques cannot directly measure the numbe
free electrons in dense plasmas. On the other hand, the
of the scattered intensities between the shifted and the
shifted peaks is only sensitive toZf which isnot the same as
Z, the true ionization state of the material. SinceZf*Z, the
measure ofZf will thus only provide an upper bound toZ,
unless the number of valence electrons can be determine
other techniques. The ratioI e(k)/I i(k) between the scattere
intensity in the electron feature and in the ion feature is giv
in Table I, where

I e~k!5ZfE
0

`

See
0 ~k,v!@11exp~2\v/kBTe!#dv5ZfSee

0 ~k!

~25!
02641
ty

of
tio
n-

by

n

and

I i~k!5u f I~k!1q~k!u2Sii ~k!. ~26!

Using the structure factors~7!, we have@9#

See
0 ~k!5See~k!2

uq~k!u2

Zf
Sii ~k!. ~27!

If a!1 and for weakly degenerate plasmas,q(k)!1 and
See

0 (k)5See(k)5Sii (k);1. Thus, in this limit

I e~k!

I i~k!
.

Zf

u f I~k!u2
*

Zf

Zc
2

. ~28!

In the case of Ti He-a 4.75-keV radiation probe atu
5160° scattering angle, the ratioI e(k)/I i(k) is given in
2-8
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Table I for different values ofTe and ne . We see that the
actual ratioI e(k)/I i(k) depends slightly on bothTe andne .
The simple ratioZf /Zc

2 underestimates the correct rat
I e(k)/I i(k), since the parametera is finite and the ionic
form factor f I(k)&Zc @ f I(k);1.6 for Zf52 and f I(k)
;0.83 forZf53]. Since in a scattering experiment, electr
temperature and electron density can be extracted from
to the electron feature, Table I could be used to obtain
ionization state.

IV. SUMMARY AND CONCLUDING REMARKS

In this paper, we have presented analytical expression
the inelastic x-ray form factor that can be easily applied

TABLE I. Ratio between the scattered intensity in the electr
feature,I e(k), and in the ion feature,I i(k). Beryllium target (ZA

54) with probe radiationl050.26 nm and scattering angleu
5160°.

Zf Te ~eV! ne (cm23) a Zf /Zc
2 I e(k)/I i(k)

2 1 131023 0.40 0.5 0.84
2 1 531023 0.52 0.5 0.78
2 40 131023 0.14 0.5 0.74
2 40 531023 0.32 0.5 0.72
3 1 131023 0.40 3.0 4.79
3 1 531023 0.52 3.0 3.78
3 40 131023 0.14 3.0 4.15
3 40 531023 0.32 3.0 3.56
W
J.

i,

v

02641
fit
e

or
o

interpreting scattering experiments in high dens
degenerate-to-hot plasmas. We have shown that x-ray Th
son scattering can be used as an effective diagnostic t
nique in plasmas produced under extreme conditions suc
the ones occurring in ICF experiments or in the interiors
planets.

Although our calculation method is limited by the co
straints of the RPA to coupling constants that are not
large, the solid density plasmas studied in this work
within the range of validity of the RPA and extend from th
full degenerate electron liquid to a classical electron g
Such diverse conditions can thus be investigated with a
ferent diagnostic technique, which will be useful, for e
ample, to directly measure the electron temperature, ion
tion state, opacity, or electron conductivity from
collisionality based on plasma resonance broadening,
EOS model validation. Synthetic spectra from low-Z materi-
als ~e.g., beryllium! have been obtained and future compa
son with experimental data will be necessary for a comp
validation of x-ray Thomson scattering as a viable diagno
method in low-Z solid density plasmas.
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